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Simple axisymmetric and ripple tokamak model fields are used to compute neoclassical trans-

port coefficients by Monte Carlo simulation over a wide range of mean free paths in the approxi-
mation of small gyroradius. Further assumptions are a monoenergetic particle distribution which 
is only subject to pitch angle scattering and a vanishing electric field. Pfirsch-Schlüter, plateau, 
banana and ripple transport coefficients are obtained. In the ripple regime the description is 
unified by introducing the concept of an effective ripple. Cases in which ripple transport is 
diminished due to collisionless detrapping are observed. 

I. Introduction 

The development of Monte Carlo codes for the 
simulation of neoclassical transport [see, for ex-
ample, 1—3] has been carried out following mainly 
two approaches. Apart from their use for model 
problems, the elegant magnetic coordinates [2] have 
to be supplemented by a code computing the 
strength of the magnetic field B [4]; they have the 
advantage of an easy way to incorporate an electric 
field and the disadvantage of being less applicable 
to magnetic configurations with islands or ergodic 
field lines. On the other hand, codes using given 
magnetic fields [1, 3] are straightforward, self-con-
sistent in the sense that no hypothetical structure 
of | B | occurs [5], and are easily adaptable to 
various physical situations; an electric field cannot 
so easily be incorporated and, possibly, they are 
not as efficient computationally, although a detailed 
comparison remains to be done. 

The Monte Carlo code used here was mainly 
developed to study neoclassical transport in stel-
larators and preliminary results have been reported 
[3, 6]. In Sect. II a brief outline of the code is 
given; Sect. I l l describes the model fields for the 
axisymmetric and the ripple tokamak; Sect. IV 
reports results for the axisymmetric, Sect. V for 
the ripple tokamak as a simple example of asym-
metric configurations whose 1/v transport behaviour 
in the long mean free path regime has been contro-
versial (see, e.g. [1,7,8]); Sect. VI discusses the 
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dependence of the results on various numerical and 
physical parameters; conclusions are presented in 
Section VII. 

II. Outline of the Monte Carlo Code 
Here, the way is described in which the magnetic 

field, the particle trajectories and the Monte Carlo 
simulation of collisions are implemented into the 
code. 

Magnetic fields are represented by their Cartesian 
components in a Cartesian coordinate system. If 
the field is given in analytical form its three com-
ponents and their eight (because of V • B = 0) in-
dependent derivatives are used. If the field is ob-
tained from line currents via Biot-Savart's law the 
three field components and the five (because of 
V ß = V X ß = 0) independent derivatives are 
used. For sufficiently complicated analytical fields 
[9] and, in any case, for fields obtained from coils, 
the field components and their derivatives are 
stored in a 3D grid, usually i n a 2 0 x l 7 x l 7 grid 
per field period, and interpolated as needed. This 
way of handling the magnetic field is particularly 
useful to reduce the computing time on the CRAY-1, 
for which this code was implemented (see also 
below). 

Particle trajectories are treated in the guiding 
center approximation with the usual guiding center 
equations 

m 
v = v„ B/B + — - B x (v||2 x + \ v±* VB/B), e 

1 V 2 
»11= k B ^B> ( 1 ) 
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where B = | B |; x is the field line curvature and 
1 

B X K = - ^ B X V X B - B - ( V X B ) B / £ . 

More recent formulations [10] have not yet been 
taken into account. 

These equations (in Cartesian coordinates) are 
numerically integrated with the method of Runge-
Kutta-Gill ([11], see Table 1) which is of fourth 
order and contains a correction for the rounding 

Table 1. Fortran program used to integrate magnetic field 
lines, particle trajectories or guiding center trajectories using 
the method of Runge-Kutta-Gill. 

200 

SUBROUTINE Y D I R (K, H. N, SYSTEM) 

IMPLICIT REAL*8 ( A - H , 0 - Z ) 

DIMENSION A (4), AP (4), C (4) 

COMMON /TR/ P(7), F(7), Q(7) 

DATA A / 0.5 DO, 
0.2928932188134524 DO, 
1.7071067811865475 DO, 
0.1666666666666666 DO/ 

DATA C / - I . DO, 
-0.2928932188134524 DO, 
-1.7071067811865475 DO, 
-0.3333333333333333 DO/ 

AP(1) = A(1)*H 
AP(2) = A(2)*H 
AP(3) = A(3)*H 
AP (4) = A(4)*H 

DO 400 L = 1, K 

DO 200 J = 1 ,3 
CALL SYSTEM 
DO 200 I = 1, N 

R = Q(I)*C (J) 
T = F(I )*AP(J) 
R = R + T 
P(I ) = P(I) + R 
Q(I) = Q(I) + 3 . * R - T 

CALL SYSTEM 
DO 300 I = 1, N 

300 

R = Q(I)*C (4) 
T = F(I )*AP (4) 
R = R + T 
P(I ) = P(I) + R 
Q(I) = Q)I) + 3 . * ( R - T ) 

400 CONTINUE 

RETURN 

END 

error. For each time step the field components and 
their derivatives are needed five times. The Runge-
Kutta step size is held constant during one run 
(see below) and is chosen as large as possible for the 
configuration under consideration; in the case of 
many field periods the time step r corresponds to a 
motion which covers only a small fraction of a 
period. 

As Monte Carlo equivalent of the pitch angle 
scattering process [12, 2] Boozer's representation [2] 

(2) 

is used where X = v\\/v and Xn and A0 are the new 
and the old value of this quantity; v± is changed 
accordingly so that the particle energy is constant. 
The quantity A ( 1 ) represents the small angle 
collisions (v\\jv cos d, AQz&^A)', the ± sings are 
taken randomly. The collision time corresponding 
to 90° collisions is defined as t 9 0 ° = t / z 1 ( v c = / 1 / t ) ; 
the mean free path as A = t90°i> = xvjA. 

The choice of the free parameters A and particle 
energy E for the evaluation of ion transport in the 
limit of small gyroradius is obtained as follows. 
For a given A, the ratio of gyroradius to plasma 
radius is chosen so small (in practice simply by 
choosing the particle energy) that 

VDr^o/ro 4 1, (3) 

where V-Q characterizes a typical drift velocity 
perpendicular to the field and TQ the mean radius 
of the magnetic surface considered. In simple toka-
mak or stellarator cases 

vD ~ EjeBR 

as is obvious from (1), so that 

l̂eff Q_ 
(4) 

is the dimensionless quantity which is chosen small 
(R toroidal radius, Q gyroradius). Here, AQa is the 
effective mean free path over which the above 
drift occurs, e.g. AeuPadA for a tokamak with 
ripple <5. The inequality (3) entails T90°, which in 
turn determines A in such a way that A 0, for 
increasing A if the collision operator (2) is applied 
after every time step r. 

Once Q/TQ and A are chosen, a random sample 
of particles (usually 64 or 100) is started on a mag-
netic surface whose transport coefficient is to be 
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determined, distributed randomly within a period 
in this surface and with respect to X. The particles 
are advanced "simultaneously" according to (1) 
and (2), in order to exploit the vector mode of the 
CRAY-1. Their deviations from the magnetic sur-
face are monitored; the run is continued until their 
mean square deviation divided by time becomes 
constant apart from the statistical error. 

m . Model Fields 

For the simulation of the axisymmetric tokamak, 
a simple divergencefree field [13] is used 

Ro r B(J) = , Be = Bqiq —, (5) 

where cp is the toroidal angle, 6 the poloidal angle 
measured around the radius of the magnetic axis 
B0, B is the major radius, r the minor radius of the 
circular surfaces, io the rotationa transform on the 
magnetic axis. 

For the simulation of ripple tokamaks the field 
generated by circular line currents lying in planes 
cp = const with centers in the equatorial plane was 
superimposed on the field given by (5). For purposes 
of comparison [7], 36 such loops, every second one 
of which carries the same amount but antiparallel 
current, were used to represent 18 toroidal field 
coils. 

Varying the amount of current and the position 
of the loops allows to vary the ripple depth and its 
spatial distribution. 

IV. Results for the Axisymmetric Tokamak 

First, the classical result [14] for the tokamak 
DB ~ A3'2DP/A, DJ>~Q*VIIRO, 

Dps ~ Dp/A, 
is reproduced as a test for the code. Here v and g 
are velocity [v= (222/ra)1/2] and formal gyroradius 
associated with v, Q = rav/ei?o- The plateau value 
which can be defined with good accucary for A ^ 20 
(see Fig. 1) is found to be 

Dp = (1.27 ± 0.02) q* ( 6 ) 
71 L KQ 

and 0.02 is the statistical error. 
Equation (6) is used as a reference value to define 

a dimensionless transport coefficient D* by 
D* = D/Dp, D$ = 1. (7) 

Further, a dimensionless mean free path is intro-
duced by 

L* = A/LC, 

where the reference length Lc is half the connection 
length 

Lc -— 7i RQ/I • 

Thus, (6) may be interpreted as obtained by random 
walk with step size Q/I and collision frequency v\Lc. 

In the banana regime the transport coefficient 
is found to be (see Fig. 1) 

D % ^ A ^ / L * , (8) 

where it must be noted that in the regime covered 
numerically the proportionality to L*_ 1 is only 
approximately valid. 

Finally, in the Pfirsch-Schlüter regime, the trans-
port coefficient turns out to be (see Fig. 1) 

D* = 1 IL* (9) 

which motivated the choice of the reference 
length Lc. 

For the results shown in Fig. 1 the rotational 
transform varied between 0.5 and 2.0, so that the 
t-dependence of (7) —(9) is verified as well. Equa-
tion (9) does not completely reproduce the Pfirsch-
Schlüter enhancement factor [13] 

1 + 2/i* 

Fig. 1. Normalized diffusion coefficient D* = D/D^ versus 
normalized mean free path L* = A/Lc (corresponding to 
collisionality 1 /L*) for tokamaks of various aspect ratios A 
and rotational transforms (0.5 2). Dp is the transport 
coefficient of the plateau regime, Lc is half the connection 
length. 
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since the collision operator only changes the pitch 
angle and not the location of the guiding center. 
Thus, the classical diffusion of guiding centers is not 
contained. 

The approximation (4) is discussed in Section VI. 

V. Results for the Tokamak with Ripple 

First, the standard situation treated in the theo-
retical literature is analyzed, in which the toroidal 
field has a ripple of the form 

1 
Bx BQ I 1 cos 6 — <5o cos N(p (10) 

This situation is obtained if the current loops 
generating the ripple enclose the plasma and are 
suitably positioned. 

Numerical results were obtained for 4̂ = 3.75, 
N = 18, various ripples and values of i, see 
Figure 2. The parameter K = NAd/i which deter-
mines the ripple depth as evaluated along a field 
line [15] varies from values large compared to unity 
to values well below unity. In all cases the results 
verified the classical prediction [16] 

DR - <53/2/v. 

Since the deviation of a drifting trapped particle 
from its magnetic surface is proportional to sin 6, 

0.1--

1<P 

2.65 \6.07% 

\\ V 

\ \ \ 0.36 % \ / \ X 
0.167 V\ \ \ 

\ 

n X \ \ 

V R 

/ * 

10 10 L* 

Fig. 2. Normalized diffusion coefficient D* versus normal-
ized mean free path L* for a tokamak of aspect ratio 
4̂ = 3.75, rotational transform t = 0.33 or i = 0.96, with 

ripple (number of periods N = 18) of various effective rip-
ple depths <5e. Dashed lines represent the equation D* = 
1.65 öfß/2 L*, while the dashed line at the bottom repre-
sents the tokamak without ripple. The ripple field varies 
only weakly poloidally and is approximately as large on 
the inner side as on the outer side (see (10)). 

it is natural to try to find a unified description of 
the numerical results by defining an effective ripple 
depth 

_ j>/2(0)sinfld0 
Jsin Odd 

where <5(0) is obtained by evaluation of the ripple 
along a field line. Indeed, the results can be sum-
marized by 

£>* = (1-65 ±0.10) desl2L* (11) 
as shown in Figure 2. Thus, ripple transport is 
comparable to plateau transport for 

Ö*I*L* ~ 1. 

Comparison with the small gyroradius approxima-
tion (4) leads to the limitation 

ro n 

Thus, for realistic parameters, ripple transport as 
discussed here will not be valid for values which 
are much larger than the plateau value. 

On the other hand, these results do not suggest 
that the range of validity of (11) is restricted to 
values of D^ much smaller than unity as found 
in [7]. The particular case treated there cor-
responds to the lowest curve of Fig. 2, which could 
not be followed to larger values of L* due to 
prohibitively large computing time. 

Second, a situation is analyzed in which it is 
computationally easier than with the ripple law (10) 
to study collisionless detrapping. The current loops 

R [cm] 

Fig. 3. Border lines of zero ripple (Anderson-Furth-diagram) 
for the three cases of Figure 4. The minor radius of the 
magnetic surface used is ro = 50 cm, the major radius Ro = 
100 cm, the aspect ratio A = Ro/ro = 2. The ripple is pro-
duced by current loops of radius 10 cm with centers at 
R = 190 cm, 2 — 0 cm. 
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Fig. 4. Normalized diffusion coefficient D* versus normal-
ized mean free path L* for a tokamak of aspect ratio A = 2, 
rotational transform t = 0.96 with lipple (N = 18) of vari-
ous effective ripple depths 6 e . Dashed lines represent D * = 
1.65 <5e3/2 L*, while the dashed line at the bottom repre-
sents the tokamak without ripple. The ripple field is con-
centrated on the outer side of the torus as shown in Fig. 3; 
there is no ripple on the inner side. Crosses mark results 
(various gyroradii, 10~4 gjro ^ 10 - 2) while solid lines are 
drawn for best fit. 

generating the ripple do not enclose the plasma but 
are placed radially outside. This leads to a concen-
tration of the ripple on the outer side of the plasma 
with larger peak values of the ripple than obtained 
with (10) for the same de. Figure 3 shows the Ander-
son-Furth [15] diagrams, Fig. 4 the numerical results 
together with the predictions according to (11). 
While the results are clearly compatible with colli-
sionless detrapping being important for the lower 
two values of ripple, the possible saturation of D* 
with increasing L* was again outside the computing 
possibility. 

VI. Dependence of Results on Numerical Parameters 

Here, the dependence of the results on the small 
angle parameter A [see (2)], the number of collision 
times, and the ratio of the gyroradius to the radius 
of the magnetic surface considered are discussed. 

1. According to the description of Sect. II, the 
change in pitch angle given by A [see (2)] is usually 

applied after each integration step. Thus, for short 
mean free path (£* = 0.1) A ~ 0.5 while for long 
mean free path (Z*>102 ) zl<10-3 . To test this 
choice of A several cases were computed in which 
the integration step and the application of the 
collision operator were decoupled. Figure 5 shows 
results for small and large values of L* in cases with 
and without ripple. Generally, the dependence of 
D* on A is weak. However, small A is indeed ap-
propriate for large L* in particular for ripple cases. 
This is of course in accordance with the expectation, 
that completely collisionless drifts should be avoided 
while determining the ripple transport-coefficient. 

2. As described in Sect. II, the number of colli-
sion times Ne is chosen such that the mean square 
deviation from the magnetic surface divided by 
time be constant. N c is a strong function of L*. 
At small L* a large value of N c is needed as is seen 
from Figure 6. Apparently this is due to the fact 

Fig. 5. Computed diffusion coefficient D* versus small angle 
parameter A (see (2)). Solid curves: tokamak without rip-
ple, A = 3.75; upper curve: L* = 0.15, lower curve: L* = 30. 
Dashed curve: tokamak with ripple <5e = 4.55%, A = 3.75, 
L* = 300. 

iO 1 1 1 

D* 

1 0 - -

1 -J — I 1 1 
10 102 103 104 Nc 105 

Fig. 6. Computed diffusion coefficient D* versus number of 
collision times N c used. Tokamak without ripple, A = 3.75, 
( = 0.33, L* = 0.01. Crosses represent computed values, the 
dashed curve has been drawn for best fit. 
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10* g/r0 
Ar/r0 1 

Fig. 7. Computed diffusion coefficient D* versus ratio of gyroradius o to radius ro of the magnetic surface considered or 
versus mean relative deviation from that magnetic surface for various Runge-Kutta step sizes S. Tokamak without 
ripple, A = 3.75, R0 = 100 cm, r0 = 26.7 cm, t = 0.96, B0 = 2T, deuterons, L* = 0.15. 

that sampling the magnetic surface by an individual 
particle is slowred down by the collisions. For large 
L*, generally Nc ~ 1 — 10 is sufficient to determine 
the transport coefficient. 

3. To be safely below the limit given by (4), 
the ratio of gyroradius to the radius of the magnetic 
surface considered is usually chosen in such a way 
that the relative root mean square deviation from 
that surface is of the order of 10~2 when D* has 
saturated with time. Additional tests (see Figs. 7 
and 8) indicate the range of g/ro over which the 

D* 
\ \ \6cm 

\ \ \ \L cm \ -

\ \ \ \ \ 
\ \ \ 

S-2cm\ \ 
\ -

10 
*r 10"" 10"' 

10-3 g/rQ 
Ar/r0 0.1 

Fig. 8. Plot of the computed diffusion coefficient D* as in 
Figure 7. Tokamak with ripple, same parameters as in 
Fig. 7, except L* = 300 and effective ripple dephth <5e = 
4.55%. 

transport coefficient can be computed. For very 
small ratios {g/ro ~ 10~5) numerical errors (e.g. the 
integration error, see Figs. 7 and 8) have to be kept 
sufficiently small. For g/ro>lO~5 there is a signi-
ficant range {g/ro< 10~3-|-10~2) in which D* does 
not depend on g/ro. 

50. o. 

o.o 
5oJo loo.o • • 150.0 

-50.0. 

Fig. 9. Final distribution of particles which started from 
a circular magnetic surface of a tokamak with ripple. Data 
are A = 3.75, R0 = 100 cm, r0 = 26.7 cm, / = 0.96, 
do = 6 .4% (Eq. (10)), de = 4.55%, B0 = 2T, deuterons, 
E = 100 eV, e/r0 = 0.004, L* - 300, Ar/r0 = 0.07, 
D* - 4.3. 
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This is the range of applicability of the standard 
neoclassical theory which starts from a Maxwellian 
distribution function as zeroth order. The upper 
bound of this range depends on the physical situa-
tion. If the configuration is twodimensional (here 
tokamak without ripple) rather large values of Q/TQ 
exceeding 10~2 are acceptable and lead to a relative 
root mean square deviation of order one. For three-
dimensional configurations with unconfined col-
lisionless particle drifts (here the tokamak with 
ripple) a loss cone in velocity space appears at 
large values of L*, see (4), so that a local transport 
coefficient can no longer be determined. In the 
example considered in Fig. 8 (Z* = 300, <5e^4.5%, 
ts^l, D* m 8) the limit of g/ro is approximately 
3 • 10~3, in accordance with the estimate (see 
Sect. V) 

Figure 9 shows the actual distribution of particles 
for such a case, which is clearly not dominated 
by collisionless drift loss. 

VII. Summary 

A Monte Carlo code for neoclassical transport 
relying on straightforward evaluation of guiding 
center orbits in given magnetic fields and Boozer's 
pitch angle collision operator has been described; 
energy scattering and electric fields are not yet 
taken into account. Results for axisymmetric and 
ripple tokamaks have been reported. Neoclassical 
theory (PS, plateau, banana, and ripple transport) 
has been verified. In the ripple regime the descrip-
tion of the results is unified by introducing the 
concept of an effective ripple de • The upper bound 
of the range of validity of the standard neoclassical 
theory (or, equivalently, the appearance of a loss 
cone in velocity space for large mean free path) 
has been discussed and indicates that D* ~ 1 may 
indeed occur for ripples in the percent range and 
q/to ~ 10 -3 —10 -2. The effect of collisionless de-
trapping has been observed. 

The same code was already applied to stellarator 
cases [3, 6]; a more complete account ofthat work 
is being prepared. 
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