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Simple axisymmetric and ripple tokamak model fields are used to compute neoclassical trans-
port coefficients by Monte Carlo simulation over a wide range of mean free paths in the approxi-
mation of small gyroradius. Further assumptions are a monoenergetic particle distribution which
is only subject to pitch angle scattering and a vanishing electric field. Pfirsch-Schliiter, plateau,
banana and ripple transport coefficients are obtained. In the ripple regime the description is
unified by introducing the concept of an effective ripple. Cases in which ripple transport is
diminished due to collisionless detrapping are observed.

I. Introduction

The development of Monte Carlo codes for the
simulation of neoclassical transport [see, for ex-
ample, 1—3] has been carried out following mainly
two approaches. Apart from their use for model
problems, the elegant magnetic coordinates [2] have
to be supplemented by a code computing the
strength of the magnetic field B [4]; they have the
advantage of an easy way to incorporate an electric
field and the disadvantage of being less applicable
to magnetic configurations with islands or ergodic
field lines. On the other hand, codes using given
magnetic fields [1, 3] are straightforward, self-con-
sistent in the sense that no hypothetical structure
of |B| occurs [5], and are easily adaptable to
various physical situations; an electric field cannot
so easily be incorporated and, possibly, they are
not as efficient computationally, although a detailed
comparison remains to be done.

The Monte Carlo code used here was mainly
developed to study neoclassical transport in stel-
larators and preliminary results have been reported
[3,6]. In Sect. IT a brief outline of the code is
given; Sect. III describes the model fields for the
axisymmetric and the ripple tokamak; Sect. IV
reports results for the axisymmetric, Sect. V for
the ripple tokamak as a simple example of asym-
metric configurations whose 1/» transport behaviour
in the long mean free path regime has been contro-
versial (see, e.g. [1, 7, 8]); Sect. VI discusses the

Reprint requests to Max-Planck-Institut fir Plasmaphysik,
Bibliothek, D-8046 Garching.

dependence of the results on various numerical and
physical parameters; conclusions are presented in
Section VII.

II. Outline of the Monte Carlo Code

Here, the way is described in which the magnetic
field, the particle trajectories and the Monte Carlo
simulation of collisions are implemented into the
code.

Magnetic fields are represented by their Cartesian
components in a Cartesian coordinate system. If
the field is given in analytical form its three com-
ponents and their eight (because of V- B=0) in-
dependent derivatives are used. If the field is ob-
tained from line currents via Biot-Savart’s law the
three field components and the five (because of
V:-B=V X B=0) independent derivatives are
used. For sufficiently complicated analytical fields
[9] and, in any case, for fields obtained from coils,
the field components and their derivatives are
stored in a 3D grid, usually in a 20 x 17 X 17 grid
per field period, and interpolated as needed. This
way of handling the magnetic field is particularly
useful to reduce the computing time on the CRAY-1,
for which this code was implemented (see also
below).

Particle trajectories are treated in the guiding
center approximation with the usual guiding center
equations
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where B= | B] ; % is the field line curvature and

BXxx= %BXVB+V><B—B~(V><B)B/B.
More recent formulations [10] have not yet been
taken into account.

These equations (in Cartesian coordinates) are
numerically integrated with the method of Runge-
Kutta-Gill ([11], see Table 1) which is of fourth
order and contains a correction for the rounding

Table 1. Fortran program used to integrate magnetic field
lines, particle trajectories or guiding center trajectories using
the method of Runge-Kutta-Gill.

c
SUBROUTINE YDIR (K, H, N, SYSTEM)
C
c
IMPLICIT REAL#8 (A—H, 0—Z)
c
DIMENSION  A(4), AP(4), C(4)
c
COMMON /TR/ P(7), F(7), Q(7)
c
DATA A /| 05 Do,
1 0.2928932188134524 DO,
2 1.7071067811865475 DO,
3 0.1666666666666666 DO/
DATA C  /—1. Do,
1 —0.2928932188134524 DO,
2 —1.7071067811865475 DO,
3 —0.3333333333333333 DO/
c
AP(1) = A(1)xH
AP(2) = A(2)xH
AP(3) = A(3)xH
AP(4) = A(4)xH
DO400L = 1,K
DO200J = 1,3
CALL SYSTEM
DO200I = 1,N
R =QIC (J)
T = F(I)*AP(J)
B =R+T
P(I) =P(I) +R
200 Q) = Q) +34R —T
c
CALL SYSTEM
DO300I =1,N
R = QIC (4)
T = F(I)xAP(4)
R =R 4T
P(I) =P(I) +R
. 300 Q) = Q)I) +3.4R —T)
400 CONTINUE
c
RETURN
END
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error. For each time step the field components and
their derivatives are needed five times. The Runge-
Kutta step size is held constant during one run
(see below) and is chosen as large as possible for the
configuration under consideration; in the case of
many field periods the time step 7 corresponds to a
motion which covers only a small fraction of a
period.

As Monte Carlo equivalent of the pitch angle
scattering process [12, 2] Boozer’s representation [2]

In=2(1—4) )0 -4 2)

is used where A=v)/v and 4, and A, are the new
and the old value of this quantity; v, is changed
accordingly so that the particle energy is constant.
The quantity A(< 1) represents the small angle
collisions (v)/v=cos 0, 40 ~]/A); the 4 sings are
taken randomly. The collision time corresponding
to 90° collisions is defined as 79pe =7/4 (ve=4/7);
the mean free path as A = 1gp.v = 70/4.

The choice of the free parameters A4 and particle
energy E for the evaluation of ion transport in the
limit of small gyroradius is obtained as follows.
For a given 4, the ratio of gyroradius to plasma
radius is chosen so small (in practice simply by
choosing the particle energy) that

vDTgee/ro < 1, 3)

where vp characterizes a typical drift velocity
perpendicular to the field and 7y the mean radius
of the magnetic surface considered. In simple toka-
mak or stellarator cases

vp ~ Ele BR
as is obvious from (1), so that

Aeft . i

T Al @)

is the dimensionless quantity which is chosen small
(R toroidal radius, p gyroradius). Here, /e is the
effective mean free path over which the above
drift occurs, e.g. Aepa~ 04 for a tokamak with
ripple d. The inequality (3) entails 7ypo, Which in
turn determines 4 in such a way that 4—0, for
increasing A if the collision operator (2) is applied
after every time step 7.

Once p/rg and A are chosen, a random sample
of particles (usually 64 or 100) is started on a mag-
netic surface whose transport coefficient is to be
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determined, distributed randomly within a period
in this surface and with respect to A. The particles
are advanced ‘‘simultaneously’” according to (1)
and (2), in order to exploit the vector mode of the
CRAY-1. Their deviations from the magnetic sur-
face are monitored ; the run is continued until their
mean square deviation divided by time becomes
constant apart from the statistical error.

III. Model Fields

For the simulation of the axisymmetric tokamak,
a simple divergencefree field [13] is used

R[) r
By=Bo—, Bo=Bowo 4, (5)

where ¢ is the toroidal angle, 6 the poloidal angle
measured around the radius of the magnetic axis
Ry, R is the major radius,  the minor radius of the
circular surfaces, ¢y the rotationa transform on the
magnetic axis.

For the simulation of ripple tokamaks the field
generated by circular line currents lying in planes
@ = const with centers in the equatorial plane was
superimposed on the field given by (5). For purposes
of comparison [7], 36 such loops, every second one
of which carries the same amount but antiparallel
current, were used to represent 18 toroidal field
coils.

Varying the amount of current and the position
of the loops allows to vary the ripple depth and its
spatial distribution.

IV. Results for the Axisymmetric Tokamak
First, the classical result [14] for the tokamak
DB ~ A3/2DP/A, Dp ~ QZ’U/LR(),
Dps ~ Dp|A,
is reproduced as a test for the code. Here v and p
are velocity [v = (2E/m)1/2] and formal gyroradius
associated with v, p =mv[e By. The plateau value

which can be defined with good accucary for 4 =20
(see Fig. 1) is found to be

Dp = (1.27 + 0.02) 2

LRy (6)

and 0.02 is the statistical error.
Equation (6) is used as a reference value to define
a dimensionless transport coefficient D* by

D*=D|Dp, Di=1. (7)

Further, a dimensionless mean free path is intro-
duced by

L* = A|L,,

where the reference length L is half the connection
length

Le=nRyt.

Thus, (6) may be interpreted as obtained by random
walk with step size g/t and collision frequency v/Le.

In the banana regime the transport coefficient
is found to be (see Fig. 1)

D¥ ~ A32|L*, 8)

where it must be noted that in the regime covered
numerically the proportionality to L*-1 is only
approximately valid.

Finally, in the Pfirsch-Schliiter regime, the trans-
port coefficient turns out to be (see Fig. 1)

D* — 1/L* 9)

which motivated the choice of the reference
length Le.

" For the results shown in Fig. 1 the rotational
transform varied between 0.5 and 2.0, so that the
t-dependence of (7)—(9) is verified as well. Equa-
tion (9) does not completely reproduce the Pfirsch-
Schliiter enhancement factor [13]

14 2/
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Fig. 1. Normalized diffusion coefficient D* = D/Dy versus
normalized mean free path L*= A/L. (corresponding to
collisionality 1/L*) for tokamaks of various aspect ratios 4
and rotational transforms (0.5 <¢<2). Dy, is the transport
coefficient of the plateau regime, L is half the connection

length.
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since the collision operator only changes the pitch
angle and not the location of the guiding center.
Thus, the classical diffusion of guiding centers is not
contained.

The approximation (4) is discussed in Section VI.

V. Results for the Tokamak with Ripple

First, the standard situation treated in the theo-
retical literature is analyzed, in which the toroidal
field has a ripple of the form

1
BTNB()(I—-ZCOSG—&)COSN(}J). (10)

This situation is obtained if the current loops
generating the ripple enclose the plasma and are
suitably positioned.

Numerical results were obtained for A =3.75,
N =18, various ripples dp, and values of ¢, see
Figure 2. The parameter K = NA §/¢ which deter-
mines the ripple depth as evaluated along a field
line [15] varies from values large compared to unity
to values well below unity. In all cases the results
verified the classical prediction [16]

Dg ~ 632Jy.

Since the deviation of a drifting trapped particle
from its magnetic surface is proportional to sin 0,

10 T

10* 10° 102 10 L 1

Fig. 2. Normalized diffusion coefficient D* versus normal-
ized mean free path L* for a tokamak of aspect ratio
A =3.75, rotational transform :=0.33 or :=0.96, with
ripple (number of periods N = 18) of various effective rip-
ple depths d.. Dashed lines represent the equation D* =
1.65 6.3/2 L*, while the dashed line at the bottom repre-
sents the tokamak without ripple. The ripple field varies
only weakly poloidally and is approximately as large on
the inner side as on the outer side (see (10)).
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it is natural to try to find a unified description of
the numerical results by defining an effective ripple
depth
[ 63/2(6) sin 6d6

{sin6do ’

where d(f) is obtained by evaluation of the ripple
along a field line. Indeed, the results can be sum-
marized by

D¥ = (1.65 4 0.10) §¢>2 L*

812 —

(11)

as shown in Figure 2. Thus, ripple transport is
comparable to plateau transport for

SL* ~ 1.

Comparison with the small gyroradius approxima-
tion (4) leads to the limitation

2 < L oL

70 TT
Thus, for realistic parameters, ripple transport as
discussed here will not be valid for values which
are much larger than the plateau value.

On the other hand, these results do not suggest
that the range of validity of (11) is restricted to
values of D} much smaller than unity as found
in [7]. The particular case treated there cor-
responds to the lowest curve of Fig. 2, which could
not be followed to larger values of L* due to
prohibitively large computing time.

Second, a situation is analyzed in which it is
computationally easier than with the ripple law (10)
to study collisionless detrapping. The current loops

o

0 } |
100 R [em] 150

Fig. 3. Border lines of zero ripple (Anderson-Furth-diagram)
for the three cases of Figure 4. The minor radius of the
magnetic surface used is ro = 50 cm, the major radius RBo=
100 cm, the aspect ratio A4 = Rg/ro =2. The ripple is pro-
duced by current loops of radius 10 cm with centers at
R =190 cm, z = 0 cm.
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Fig. 4. Normalized diffusion coefficient D* versus normal-
ized mean free path L* for a tokamak of aspect ratio 4 =2,
rotational transform (=0.96 with ripple (N =18) of vari-
ous effective ripple depths de. Dashed lines represent D* =
1.65 §¢3/2 L*, while the dashed line at the bottom repre-
sents the tokamak without ripple. The ripple field is con-
centrated on the outer side of the torus as shown in Fig. 3;
there is no ripple on the inner side. Crosses mark results
(various gyroradii, 104 < p/ro < 10~2) while solid lines are
drawn for best fit.

generating the ripple do not enclose the plasma but
are placed radially outside. This leads to a concen-
tration of the ripple on the outer side of the plasma
with larger peak values of the ripple than obtained
with (10) for the same d¢. Figure 3 shows the Ander-
son-Furth [15] diagrams, Fig. 4 the numerical results
together with the predictions according to (11).
While the results are clearly compatible with colli-
sionless detrapping being important for the lower
two values of ripple, the possible saturation of D*
with increasing L* was again outside the computing
possibility.

VI. Dependence of Results on Numerical Parameters

Here, the dependence of the results on the small
angle parameter A [see (2)], the number of collision
times, and the ratio of the gyroradius to the radius
of the magnetic surface considered are discussed.

1. According to the description of Sect. II, the
change in pitch angle given by 4 [see (2)] is usually

903

applied after each integration step. Thus, for short
mean free path (L*=0.1) 4 ~0.5 while for long
mean free path (L*>102) 4<<10-3. To test this
choice of A several cases were computed in which
the integration step and the application of the
collision operator were decoupled. Figure 5 shows
results for small and large values of L* in cases with
and without ripple. Generally, the dependence of
D* on A is weak. However, small 4 is indeed ap-
propriate for large L* in particular for ripple cases.
This is of course in accordance with the expectation,
that completely collisionless drifts should be avoided
while determining the ripple transport-coefficient.

2. As described in Sect. IT, the number of colli-
sion times N, is chosen such that the mean square
deviation from the magnetic surface divided by
time be constant. N is a strong function of L*.
At small L* a large value of N, is needed as is seen
from Figure 6. Apparently this is due to the fact

10

o f\/\/EQ'?/\/

l\/l\___J/\/\
s o o 0 @ & i
Fig. 5. Computed diffusion coefficient D* versus small angle
parameter 4 (see (2)). Solid curves: tokamak without rip-
ple, A =3.75; upper curve: L* =0.15, lower curve: L* = 30.
Dashed curve: tokamak with ripple de =4.559,, 4 =3.75,
L* = 300.

10° . :
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Fig. 6. Computed diffusion coefficient D* versus number of
collision times N used. Tokamak without ripple, 4 =3.75,
t=0.33, L* =0.01. Crosses represent computed values, the
dashed curve has been drawn for best fit.
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Fig. 7. Computed diffusion coefficient D* versus ratio of gyroradius g to radius rp of the magnetic surface considered or
versus mean relative deviation from that magnetic surface for various Runge-Kutta step sizes S. Tokamak without
ripple, 4 = 3.75, Ry = 100 cm, ro = 26.7 cm, ¢ = 0.96, By = 2 T', deuterons, L* = 0.15.

that sampling the magnetic surface by an individual
particle is slowed down by the collisions. For large
L*, generally N ~ 1 —10 is sufficient to determine
the transport coefficient.

3. To be safely below the limit given by (4),
the ratio of gyroradius to the radius of the magnetic
surface considered is usually chosen in such a way
that the relative root mean square deviation from
that surface is of the order of 10-2 when D* has
saturated with time. Additional tests (see Figs. 7
and 8) indicate the range of p/rg over which the

10 10° gir,

102 Arlr, 01

Fig. 8. Plot of the computed diffusion coefficient D* as in
Figure 7. Tokamak with ripple, same parameters as in
Fig. 7, except L* =300 and effective ripple dephth de=
4.559%,

transport coefficient can be computed. For very
small ratios (p/ro ~ 10~5) numerical errors (e.g. the
integration error, see Figs. 7 and 8) have to be kept
sufficiently small. For g/ro > 10-5 there is a signi-
ficant range (9/ro<< 103 --10-2) in which D* does
not depend on g/rg.

0.0

Solo 100.0 1So0.0

-50.00

Fig. 9. Final distribution of particles which started from
a circular magnetic surface of a tokamak with ripple. Data
are A = 3.75, Ry= 100cm, 7r9= 26.7cm, = 0.96,
0o = 6.49%, (Eq. (10)), de = 4.559;,, By = 2T, deuterons,
E =100eV, g/rp=0.004, L* =300, Ar/ro=0.07,
D* = 4.3.
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This is the range of applicability of the standard
neoclassical theory which starts from a Maxwellian
distribution function as zeroth order. The upper
bound of this range depends on the physical situa-
tion. If the configuration is twodimensional (here
tokamak without ripple) rather large values of o/rg
exceeding 102 are acceptable and lead to a relative
root mean square deviation of order one. For three-
dimensional configurations with unconfined col-
lisionless particle drifts (here the tokamak with
ripple) a loss cone in velocity space appears at
large values of L*, see (4), so that a local transport
coefficient can no longer be determined. In the
example considered in Fig. 8 (L* =300, de ~4.5%,
t~1, D*~8) the limit of p/r¢ is approximately
3:10-3, in accordance with the estimate (see
Sect. V)

512
olro < n D*

Figure 9 shows the actual distribution of particles
for such a case, which is clearly not dominated
by collisionless drift loss.
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